Principal ideal theorem for Noetherian P. I. rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES

The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.

متن کامل

Strongly Noetherian rings and constructive ideal theory

We give a new constructive definition for Noetherian rings. It has a very concrete statement and is nevertheless strong enough to prove constructively the termination of algorithms involving “trees of ideals”. The efficiency of such algorithms (at least for providing clear and intuitive constructive proofs) is illustrated in a section about Lasker–Noether rings: we give constructive proofs for ...

متن کامل

generalized principal ideal theorem for modules

the generalized principal ideal theorem is one of the cornerstones of dimension theory for noetherian rings. for an r-module m, we identify certain submodules of m that play a role analogous to that of prime ideals in the ring r. using this definition, we extend the generalized principal ideal theorem to modules.

متن کامل

A Generalized Principal Ideal Theorem

KrulΓs principal ideal theorm [Krull] states that q elements in the maximal ideal of a local noetherian ring generate an ideal whose minimal components are all of height at most q. Writing R for the ring, we may consider the q elements, x19 , xq say, as coordinates of an element xeR. It is an easy observation that every homomorphism R —> R carries x to an element of the ideal generated by xi9 ,...

متن کامل

MDS codes over finite principal ideal rings

The purpose of this paper is to study codes over finite principal ideal rings. To do this, we begin with codes over finite chain rings as a natural generalization of codes over Galois rings GR(pe, l) (including Zpe). We give sufficient conditions on the existence of MDS codes over finite chain rings and on the existence of self-dual codes over finite chain rings. We also construct MDS self-dual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1975

ISSN: 0021-8693

DOI: 10.1016/0021-8693(75)90032-0